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A semiclassical direct dynamics method for nonadiabatic systems is tested by comparing with quantum wave
packet dynamics, looking at the molecular dynamics of the butatriene molecule after formation of the radical
cation in the first excited, A˜ , state. There is a conical intersection coupling this state to the cationic ground
state, X̃, and this plays a major role in the system evolution. The direct dynamics study consists of 80
trajectories, with the potential energy surfaces calculated on-the-fly using a complete active space (CASSCF)
electronic wave function. The quantum dynamics used a model Hamiltonian and the multiconfigurational
time-dependent Hartree (MCTDH) method to solve the time evolution of the nuclear wave packet. The results
show that the methods give a similar description of the initial part of the dynamics, with a similar time scale
for the interstate crossing. A qualitatively different behavior is, however, seen after crossing to the lower
adiabatic surface, with a recurrence in the quantum dynamics not present in the direct dynamics. The direct
dynamics also indicates the possible importance of a second intersection seam, which is not present in the
model used for the quantum dynamics.

1. Introduction

The presence of a conical intersection between two electronic
states can have a profound effect on the time evolution of a
molecular system. This is particularly true after photoexcitation
to the upper state: if the intersection is reached, nonradiative
decay to the lower state occurs on an ultrafast, femtosecond,
time scale. An understanding of the dynamics of such a process
is crucial for an understanding of the mechanism of the reaction
and the products formed, as relaxation to the lower state takes
place in a coherent manner. Not only the topology of the conical
intersection but also the initial conditions provided by the
experimental preparation of the system and the path taken to
the intersection play a role in the final outcome. Here, molecular
dynamics simulations play a significant role in the description
and visualization of these nonadiabatic processes.

A computer simulation of molecular dynamics (MD) needs
two ingredients: a potential energy surface and an efficient way
to propagate the system from the initial conditions over the
surface. In this study we shall focus on the evaluation of the
potential energy surface. Traditional dynamics methods, whether
the nuclei are treated classically or quantum mechanically, need
the potential energy surface as an analytical expression. This
requires the global evaluation and fitting of the potential energy
throughout coordinate space, a long and tedious process even
for small molecules. For more than a few degrees of freedom
the accurate evaluation becomes a hopeless task, and models
must be used.

An alternative is to calculate the surface as and when it is
required during the dynamics. This “direct dynamics” approach1

has much appeal due to the great flexibility it would offer in
the study of molecular dynamics. For large systems it is also a
must for reasons of efficiency as the space not visited during
the dynamics is enormous, and calculating the potential energy

surface in these unexplored regions is a prohibitive waste of
effort.

One problem applying direct dynamics to nonadiabatic
systems is that the quantum chemistry method used to calculate
the potential energy surface must be of reasonable quality on
an excited state. The second problem is the dynamics algorithm
to be used, in particular the question is how to include the
nonadiabatic coupling. Molecular systems are quantum me-
chanical in nature, and the dynamics are described by the time-
dependent Schro¨dinger equation. The nuclei should thus be
described by a delocalized wave packet evolving in time.
Calculating the potential on-the-fly, however, means that the
potential energy surface is only known locally. As a result we
turn to semiclassical methods, which use a description based
on trajectories in a phase space. In a recent article2 we review
the field of direct dynamics, discussing both these points.

The question to be addressed in this paper is how good is a
simple direct dynamics method for the description of a nona-
diabatic process? The most popular method for the semiclassical
dynamics of nonadiabatic systems is the trajectory surface
hopping method.3 In this, trajectories run over the upper surface
until a region with strong nonadiabatic coupling is reached. Here
the trajectories hop to the lower surface with a probability related
to the strength of the coupling, so simulating the interstate
crossing. An alternative method, which has already been used
in direct dynamics studies, is the spawning method.4,5 This in
principle treats the nuclei in a fully quantum mechanical manner
but is computationally more demanding.

A direct dynamics algorithm using surface hopping has
already been implemented and applied to a number of systems,
both using full complete active-space self-consistent field
(CASSCF) wave functions6,7 and the molecular mechanics-
valence bond (MMVB) method, which simulates a CASSCF
method.8-12

In these calculations, particularly using a full CASSCF wave
function, it was not possible to run more than a few trajectories.
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Although the calculations were able to provide dynamical
information to enhance understanding of the chemistry taking
place, for accurate dynamics using surface hopping a large
number of trajectories should be run. In this work we aim to
test our trajectory surface hopping direct dynamics scheme by
running a reasonable number of trajectories and comparing the
results to full quantum molecular dynamics calculations. As a
test case we take the formation of a butatriene radical cation in
the Ã2B2u state. In the photoelectron spectrum, the band arising
from this state is linked to that from the X˜ 2B2g state by a
structured spectrum,13 which is known to be due to a conical
intersection between them.14 As a test system it is ideal. It is a
small organic molecule with a fairly simple electronic structure,
and the quantum chemistry should be reasonable with a small
basis set. The conical intersection also lies very close to, and is
directly accessible from, the Franck-Condon region so that only
short simulations are required to describe the nonadiabatic
effects. As a prototypical conical intersection, it is also a good
test of the method with physical relevance.

Shown in Figure 1, butatriene (C4H4) is a linear planar
molecule withD2h symmetry at the neutral ground-state equi-
librium geometry. Figure 2 sketches the orbitals and Figure 3
the important nuclear modes for the system to be studied. In
butatriene, threeπ-orbitals lie perpendicular to the carbon axis,
and formation of the X˜ 2B2g and Ã2B2u states of the radical cation
results from removal of an electron of the highest two occupied
orbitals. These lie at right angles to one another, with the X˜
state being formed by making a hole in a molecular orbital that
lies above and below the plane of the molecule and the A˜ state
hole being in a molecular orbital that lies in the plane. Torsional
motion around the axis leads to vibronic coupling between these
states. The central C-C symmetric stretch vibration also plays
a major role in the vibronic coupling, providing the second
degree of freedom required for the formation of a conical
intersection between the states.

The quantum dynamics were made using a vibronic coupling
model Hamiltonian15 for the coupled X˜ /Ã states in the butatriene
radical cation. This model has been successfully applied to a
number of problems in which the system passes through a
conical intersection within a few femtoseconds after excitation.
In a recent paper, Cattarius et al.16 set up a model Hamiltonian
for the coupled states, treating five nuclear degrees of freedom

explicitly. This model, which is complete to first order in the
coupling, reproduces the spectrum for this system very well,
and hence describes the major features of the molecular
dynamics. Here, to use it as a comparison for the direct dynamics
calculations, we reparametrize this Hamiltonian to reproduce
the CASSCF potential energy surfaces.

2. Theory and Methods

2.1. Electronic Structure and Direct Dynamics Calcula-
tions. The direct dynamics and quantum chemistry calculations
were made using a development version of the GAUSSIAN
program.17 The potential energy, gradient, and force constants
for the butatriene radical cation ground and first excited states
were evaluated using a CASSCF method. The active space
chosen was to distribute theπ-electrons (six for calculations
on the neutral species and five for the radical cation) in the six
π-orbitals. As can be shown by localization,18 the active space
used can be thought of as comprising the six carbon p-orbitals
that do not contribute to theσ-bonding framework. Each carbon
contributes a p-orbital perpendicular to the molecular plane,
while the central two carbon atoms also provide two p-orbitals
that lie in the plane. The active space used is sketched in Figure
2. The calculations are labeled CAS(N,M)/X, whereN is the
number of electrons andM the number of orbitals in the active
space, and X denotes the basis set used. In all the results
presented here, a basis set of 3-21G* was used. As we are
comparing theory with theory, the basis set used is not critical.
That it at least provides a reasonable description of the butatriene
molecule was shown by comparison with 6-31G* calculations
at a number of geometries, which showed no major differences.

For the semiclassical trajectory calculations, a set of points
in phase space must first be generated to represent the nuclear
wave packet. This was done by sampling the neutral ground-
state using the normal-mode sampling algorithm.19,20 Half a
quantum of energy was put into each normal mode and a set of
positions and momentum set up by random sampling, with a
correction made to scale the initial harmonic guess to the true
potential surfaces. In this way the zero point energy of the
ground-state system is approximately included. A more faithful

Figure 1. Geometrical parameters defining the structure of the
butatriene molecule.

Figure 2. Orbitals involved in the coupled X˜ 2B2g/Ã2B2u states of the
butatriene radical cation. The active space used is effectively the six
p-orbitals on the carbon atoms orthogonal to the carbon axis. A hole is
denoted by a+, and an unpaired electron by ab. s shows a bond.
The X̃2B2g has had an electron removed from the orbitals in the plane
perpendicular to the molecular plane, whereas the A˜ 2B2u state is formed
by removing an electron from the orbitals in the molecular plane.

Figure 3. Important vibrational modes involved in the dynamics of
the butatriene radical cation in the coupled X˜ 2B2g/Ã2B2u electronic states,
defined by the neutral ground-state normal modes calculated at the
equilibriumD2h geometry.Q5 is the coupling mode with Au symmetry
and is related to the torsional motion. The remaining four modes are
totally symmetric vibrations. Of particular importance isQ14, the
symmetric vibration of the central C-C bond.
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representation of the quantum wave packet would be to sample
a Wigner, or similar, distribution that maps the quantum wave
packet onto phase space.21 This would, however, mean that even
more trajectories would be required, and experience seems to
show that the classical distribution taken here is reasonable.

The wave packet was then propagated using a trajectory
surface hopping method. Starting on the upper adiabatic surface,
each point evolves along a classical trajectory. The integration
scheme for the trajectories was the Helgaker-Chen algo-
rithm.1,22 This uses a harmonic approximation to the surface to
generate a predictor step, followed by a corrector step using a
fifth-order polynomial fit to the true surface. Despite the need
for calculating the Hessian matrix and its eigenvalues at each
step, this method is efficient due to the very large steps that
can be taken.

The probability of hopping between surfaces was obtained
from the state populations calculated by propagating the
electronic wave function. Using the basis of state functions,
{ψi}, the electronic wave function can be represented by the
vector of coefficients,a(t). This vector can then be propagated
in time by solving

whereH is the electronic Hamiltonian in the state function basis.
The squares of the vector elements give the population of the
electronic states as a function of time (see ref 23 for more
details), and a hop between surfaces was performed if the
probability for the populated state drops below 0.65.

Smaller steps are needed for the time evolution of the
electronic wave function than are required for the integration
of the nuclear equations of motion. For this reason, and as the
probability of hopping is negligible until the surfaces become
close, the electronic wave function propagation is only started
when the energy gap between the states goes below a limit of
0.04 hartree. It is then stopped when the gap goes back above
this value. To save computational effort, the Hessian matrix is
updated rather than recalculated at each step during this time.
As is usual in surface hopping methods, the energy is conserved
after a hop by correcting the momentum in the direction of the
derivative coupling vectorFij ) 〈ψi|∇ψj〉.24 After a hop takes
place, a wait of 5 fs is made to allow the system to adjust to
the new surface before testing for a hop again.

When the surfaces are close in energy, state-averaged orbitals
have to be used to ensure convergence of the CASSCF wave
function. When this is not the case, however, non-state-averaged
orbitals should be used. To make a smooth transition between
the two regimes, the weighting factor for the averaging was
changed over a number of steps. Assuming that the system is
initially in state 2 outside the nonadiabatic region, the weights
(0.0, 1.0) are used. Once a gap of 0.05 hartree is reached, the
weights were changed by 0.1 over 5 steps until fully state-
averaged orbitals weighted (0.5, 0.5) were used. After moving
back out of the nonadiabatic region the weights were again
smoothly reversed so that the wave function for a single state
was optimized.

2.2. Vibronic Coupling Model Hamiltonian. To describe a
nonadiabatic system, we start by assuming a diabatic representa-
tion; i.e., the Hamiltonian is written in matrix form as

where T̂N is the nuclear kinetic energy operator and1 is the
unit matrix. Matrix elements refer to the electronic states
accessible to the system, and coupling between electronic states

is provided by off-diagonal elements in the potential operator
matrix,W. This contrasts to the adiabatic representation in which

where the diagonal matrixV(Q) contains the solutions to the
clamped nucleus electronic Hamiltonian at nuclear coordinate
Q, and Λ is the nonadiabatic coupling operator, a nonlocal
operator responsible for coupling motion on the different
adiabatic potential energy surface. The two representations are
connected by a transformation that diagonalizes the potential
matrix at every point in space

Thus the diabatic representation assumes that the transformation
is such that the nonlocal nonadiabatic operator is transformed
into the local diabatic potential matrix. For more details see,
e.g., refs 2 and 15.

The vibronic coupling model expresses the potential matrix
W by Taylor expansions about a suitable point,Q0, and zeroth-
order potential,Wi

(0)

whereHel is the usual clamped nucleus electronic Hamiltonian,
φi is the diabatic electronic wave functions, and the integrals
and derivatives are evaluated at the pointQ0. The arbitrary phase
of the diabatic functions is taken care of by setting them equal
to the adiabatic functions atQ0. As a result,

whereEi ) Vi(Q0) is the adiabatic energy atQ0, andκ andλ
are the expansion coefficients defined in eq 5.

The situation to be described is an excitation from the neutral
ground state into the coupled manifold of radical cation states.
For this reason,Q0 is taken as the neutral ground-state
equilibrium geometry, which is the Franck-Condon point on
excitation, andWi

(0) for both states is the neutral ground-state
potential energy surface. Taking the latter in a harmonic
approximation, the natural coordinates for the system are then
the neutral ground-state normal modes, i.e., the eigenfunctions
of the Hessian (potential second-derivative) matrix atQ0. Scaling
these so they become dimensionless (mass-frequency weighted)
coordinates, the zero-order potentials are

and the kinetic energy operator is

Note that atomic units have been implicitly used withp ) 1.
A huge simplification is now obtained by considering the

symmetry of the coordinates and electronic states. The integrals

H(Q) ) T̂N1 - Λ(Q) + V(Q) (3)

V(Q) ) S(Q)† W(Q) S(Q) (4)

Wij - Wi
(0)δij ) 〈φi|Hel|φj〉 + ∑

R)1

f [ ∂

∂QR

〈φi|Hel|φj〉]QR + ... (5)

Wii ) Ei + Wi
(0) +∑

R)1

f

κR
(i)QR + ... (6)

Wij ) ∑
R)1

f

λR
(ij )QR + ... (7)

W(0) ) ∑
R

ωR

2
QR

2 (8)

T̂N )∑
R

-
ωR

2

∂
2

∂QR
2

(9)

a(t + τ) ) exp(-iHτ)a(t) (1)

H(Q) ) T̂N1 + W(Q) (2)
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for the coupling constantsκ and λ are only nonzero if the
symmetry product of the electronic wave functionsφi and φj

and the nuclear coordinate,QR, contain the totally symmetric
irreducible representation:

Thus to first order (linear vibronic coupling) only totally
symmetric coordinates appear on the diagonal, and only modes
of a particular symmetry appear on the off-diagonal.

In the butatriene radical cation, at the neutral ground-state
equilibrium geometry the electronic states of interest are X˜ 2B2g

and Ã2B2u. Given that the point group at this geometry isD2h,
the model complete to first order includes five degrees of
freedom. These are the four totally symmetric vibrational modes,
ν8, ν12, ν14, andν15, which provide the on-diagonal terms, and
the one vibrational mode with Au symmetry,ν5, which provides
the off-diagonal coupling. All other nuclear coordinates couple
only to second order with bilinear and quadratic terms, which
have been shown to be small in butatriene.16 Neglecting these
higher order terms, the potential energy surface for these 13
modes is simply the zero-order Hamiltonian, the sum of the
neutral ground-state harmonic functions. On excitation, these
modes are thus not excited and play no role in the initial
molecular dynamics. In general, it is found that these weak
second-order terms play a role at longer times, typically after a
few hundred femtoseconds, by providing a bath into which the
energy slowly flows, causing the wave packet to spread out
and dephase.

A more realistic model for the dynamics is obtained if the
coupling mode is taken as the dihedral angle,θ. The transfor-
mation from the normal mode coordinate to the torsion angle
is

where r0 is the distance from the hydrogen atom, which has
massmH, to the carbon-carbon axis, andω5 is the frequency
of the neutral ground-state normal vibration. The kinetic energy
operator for this degree of freedom in eq 9 is then transformed

where the moment of inertia around the torsion angle isI )
2mHr0

2. The zero-order potential in eq 8 is also replaced by the
trigonometric series

and the linear intrastate coupling by the term

The parameters for this model evaluated previously16 result
in a spectrum in very good agreement with the experimental
one. In particular, the intensity and structure between the
expected bands due to the breakdown of the Born-Oppenheimer
approximation is reproduced very well. The neglect of the other
modes in this process is thus justified. In this work, the model
potential energy surface must match as closely as possible the
potentials used in the direct dynamics to allow a comparison
of the two methods. The parameters were thus reevaluated by
fitting to energies calculated at the CAS(5,6)/3-21G* level at a

range of geometries. The root mean-square deviation (RMSD)
between the model and quantum chemistry values was 0.06 eV
over 106 points. These parameters are listed in Table 1.

2.3. Critical Points and Vectors.A dynamical process is
dependent on the topology of the potential energy surface
traversed, and its description can be made using critical points
and vectors on the surface. The obvious coordinate system in
which to work are the dynamical variables of the model
Hamiltonian presented above. These are a reduced set of nuclear
coordinates that can describe the major features of the nuclear
dynamics in terms of the molecular motion, and comprise the
torsional angle and the four symmetric neutral ground-state
normal-mode coordinates. To define points (or other vectors)
on the surfaces, we will use the vector with components

where Qi are the dimensionless normal-mode coordinates
introduced in the last section, associated with the vibrationνi

of the neutral species, andθ the torsion angle in degrees. These
are shown in Figure 3. To connect to the molecule, results will
also be given in terms of the geometrical parameters shown in
Figure 1. The critical points are shown graphically in Figure 4.

The first point of interest is the Franck-Condon point,QFC,
the center of the initial wave packet. The vector of force away

Γi X ΓR X Γj ⊃ Ag (10)

Q5 f r0xω5mHθ (11)

-
ω5

2
∂

2

∂Q5
2

f - 1
2I

∂
2

∂θ2
(12)

ω5

2
Q5

2 f ∑
n

An sin2(nθ) (13)

λ5Q5 f λ5r0xω5mH sin θ (14)

TABLE 1: Parameters Used in the Vibronic Coupling
Model Hamiltoniana

mode ω κ(1) κ(2)

Q8(1Ag) 0.1117 -0.0456 -0.0393
Q12(2Ag) 0.2021 0.0399 0.0463
Q14(3Ag) 0.2723 -0.2139 0.2877
Q15(4Ag) 0.4102 -0.0864 -0.1352

θ(Au) An λ ) 0.3289
n ) 1 1.4823
n ) 2 -0.2191
n ) 3 0.0525
n ) 4 -0.0118

E1 ) 8.5037 E2 ) 9.4523

a The coordinates are the neutral ground-state totally symmetric
normal modes and the torsion angle. See section 2.2 for details. For
comparison with earlier work16 values are in eV.

Figure 4. Potential energy surfaces for the X˜ 2B2g/Ã2B2u states of the
butatriene radical cation in the space of the symmetric stretch vibration,
Q14, and the torsional mode,θ, as given by the linear vibronic coupling
model Hamiltonian. The upper cone belongs to the A˜ , and the lower
sheet the X˜ adiabatic electronic state. Critical points are marked: FC
is the Franck-Condon point, CoIn the lowest energy point on the
conical intersection seam, Amin and Xmin the minima on the two surfaces,
and TS the transition state point.

Q ) (θ, Q8, Q12, Q14, Q15) (15)
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from this point,FFC, is the line of initial motion in a classical
picture. The upper adiabatic surface is then characterized by
the position and depth of the minima atQÃ, and by the conical
intersection seam through which the interstate crossing occurs.
To characterize the conical intersection, we use the lowest
energy point on the seamQCoIn, and the gradient difference and
derivative coupling vectors,FGD and FDC, respectively. The
energy difference betweenQCoIn andQFC dictates whether the
intersection is energetically accessible to the excited system,
whereas the two force vectors provide the “branching space”
in which the degeneracy of the seam is lifted. After changing
states, the wave packet will bifurcate in this space as it moves
away from the conical intersection. Finally, the minima on the
lower surface are the points at which the system could end if
the energy is dissipated to the environment. They thus define
the configurations accessible to the photoexcited molecule. In
butatriene there are two minima, denotedQX̃, which are
equivalent due to symmetry. They are separated by a transition
state atQTS.

Before progressing, the vectorsFGD andFDC will be defined.
A conical intersection occurs when two potential energy surfaces
become degenerate. At such a point it is easier to describe the
system by expressing the Hamiltonian using a diabatic electronic
basis, eq 2. The adiabatic surfaces are then given by

where ∆W ) 1/2(W22 - W11). We now move to a point of
degeneracy, which occurs when

Here the diabatic wave functions are set equal to the adiabatic
functions. Making a Taylor expansion of the diabatic matrix
elements around this point, these terms can be written to first
order in vector notation as

with the components of the vectors defined by

where the derivatives are evaluated atQCoIn. Moving in then
- 2-dimensional space orthogonal to the vectorsFGD andFDC,
the degeneracy of the states is retained as eq 17 holds, whereas
moving in this space the degeneracy is lifted. From eq 16 it
can be seen that in the branching space, the adiabatic potential
energy surface has the form of a double cone, hence the name
conical intersection.

All these points and vectors on both radical cation potential
energy surfaces can be calculated using CASSCF methods.
Transformation to the dynamical coordinates was made using
the normal modes calculated at the neutral ground-state mini-
mum at the CAS(6,6)/3-21G* level. The minima on both
surfaces were located using standard energy optimization,
whereas the lowest energy point on the conical intersection
involves a constrained optimization to find the lowest energy
point along the degenerate seam.25,26 Finally, the transition

structure on the lower cationic surface is found by optimization
of the molecule in the planar,D2h, symmetry. See ref 27 for
further details of how to characterize a potential energy surface.

One of the advantages of the linear vibronic coupling model
is that analytic expressions can be obtained for the critical points.
The Franck-Condon pointQFC is the pointQ0, and the force
FFC is the vector of linear coupling coefficients, (0,κ8

(2),κ12
(2),κ14

(2),
κ15

(2)). The expression for the position of the lowest energy point
on the conical intersection seam is more complicated but is given
in section 3 of ref 15. Using the parameters from the model to
define

and

the coordinates of the lowest energy point on the conical
intersection are

Note that only the symmetric modes are changed, all other
coordinates retain the value at the Franck-Condon point.

To find the gradient difference and derivative coupling
vectors, the origin of the coordinate system can be shifted along
the totally symmetric coordinates toQCoIn. Here, the elements
of the vectors are given by

where

An analytic expression for the position of the transition state
on the lower surface is also found by minimizing the energy of
the lower adiabatic surface withθ ) 0°, i.e.

where R again refers to one of the symmetric vibrational
coordinates. Unfortunately, in contrast to the case when the
coupling mode is treated using a harmonic oscillator, the Fourier
series used for the torsional angle diabatic potential means that
a simple analytic expression is not possible for the minima on
the adiabatic surfaces. These were found by numerical optimiza-
tion.

2.4. Wave Packet Propagation.The wave packet dynamics
were carried out using the very efficient MCTDH method as
implemented in the Heidelberg MCTDH package.28-30,32In this,
the nuclear wave function is expanded in a time-dependent basis
set

V( ) 1
2
(W11 + W22) ( x∆W2 + W12

2 (16)

∆W ) W12 ) 0 (17)

∆W ) FGD‚Q (18)

W12) FDC‚Q (19)

FGD
R ) ∂

∂QR
∆W (20)

FDC
R ) ∂

∂QR
W12 (21)

σR ) 1
2
(κR

(1) + κR
(2)) δR ) 1

2
(κR

(2) - κR
(1)) (22)

D ) ∑
R

δR
2

ωR

F ) ∑
R

δRσR

ωR

∆ )
1

2
(E2 - E1) (23)

QCoIn,R )
δR

ωR

F - ∆
D

-
σR

ωR
(24)

FGD
R ) δ′R ) 1

2
(κ′R

(2) - κ′R
(1)) (25)

FDC
R ) λR (26)

κ′R
(i) ) κR

(i) + ωRQCoIn,R (27)

QTS,R ) -
κR

(1)

ωR
(28)

ψ(Q1...Qf ,t) ) ∑
R

∑
j1...jf

Aj1...jf

(R) (t)æj1

(1,R)(Q1,t) ...æjf

(f,R)(Qf ,t) (29)
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The indexR refers to the electronic states of the system, and so
a different basis set is used for each state. The indicesj1, j2, ...
label the basis functions. Both the expansion coefficients and
the functions are then propagated by equations of motion derived
from a variational solution of the time-dependent Schro¨dinger
equation. As a result, the basis functions, known as single-
particle functions, optimally describe the evolving wave packet
at all times. For details of the equations of motion and how
they are solved, see ref 30.

The single-particle functions are themselves described by one-
dimensional time-independent basis sets using a discrete variable
representation (DVR). For the normal modes in the vibronic
coupling Hamiltonian, a harmonic oscillator DVR is used. For
the torsional angle, an exponential DVR is used. This automati-
cally introduces periodic boundary conditions for this degree
of freedom. Details are given in the appendices of ref 30.

The single-particle functions need not be one-dimensional
as indicated by eq 29, i.e., they describe more than one degree
of freedom. By using this flexibility, the computational require-
ments can be significantly reduced. The computational require-
ments scale approximately withp2np+1 + pnN2, wherep is the
number of sets of single-particle functions,n is the number of
functions, andN is the number of grid points used to describe
the functions. Thus by combining degrees of freedom together,
p is made smaller and the number of expansion coefficientsnp

reduced. In doing this, however, the number of grid points,N,
increases as the product primitive grids for the combined degrees
of freedom are now required here. For best efficiency a balance
must be found between reducingp and increasingN.

Numerical details of the MCTDH calculations are given in
Table 2. Thus the degrees of freedomθ and Q14 are treated
using a set of 2-dimensional single-particle functions, as are
theQ12 andQ15 modes. The number of DVR grid points is then
given for each degree of freedom, so for example, the (θ, Q14)
particle had a grid of 41× 15 ) 615 points. The number of
single-particle functions for each set required for converged
calculations starting in the upper, A˜ , state are also given for
the wave packet in each state. The compact nature of the
MCTDH method can be easily seen by the number of complex
numbers required for the representation of the wave function.
Using a standard wave packet method, which represents the
nuclear wave function in the full product primitive basis,
922 500 numbers are required. The MCTDH wave function
needs only 12 388 numbers.

The process under study is the ejection of an electron by the
interaction of the molecule with light. Such a process is modeled
by the transition from the neutral ground state to a diabatic
excited state. Only then is the transition dipole moment relatively
constant throughout the relevant space, which is necessary for
the Condon approximation to be valid. The neutral ground-state
wave function in the space of the five modes of the model is a
product of harmonic oscillator (Gaussian) functions for the four
symmetric modes, and the lowest eigenfunction from the

ground-state torsional potential. This potential function is the
Fourier series eq 13 with the coefficients given in Table 1. As
the matrix elements of the Hamiltonian operator relate to the
diabatic representation, the initial wave packet for the dynamics
is formed simply by putting this wave function in the desired
state by setting the coefficient for this configuration,A111

(2) , to
1.0 and all the other coefficients to zero.

Many properties can be directly obtained from the time-
dependent wave function, such as expectation values of
coordinates. An exception is the adiabatic state populations
required for the comparison with the direct dynamics surface
hopping calculations, which requires that the wave packet is
expressed in the adiabatic representation. For this the wave
packet must be transformed using the matrixesS(Q) defined in
eq 4. These are complicated multidimensional operators and
can only be applied to the wave packet on the full product
primitive grid. The wave packet was thus saved every 5 fs, and
only these were transformed to the desired representation.

3. Results

3.1. Characterization of the Potential Energy Surface.We
start by examining the topology of the adiabatic potential energy
surfaces. A cut of the surfaces from the analytical model
Hamiltonian is shown in Figure 4. It is taken at the lowest energy
point of the conical intersection seam in the space of theQ14

andθ degrees of freedom, and the critical points are marked.
The molecular geometry and energies at the critical points are
also listed in Table 3, both from the model Hamiltonian and
the quantum chemistry calculations. Despite the simplicity of
the model, it is seen to reproduce the quantum chemistry very
well. Of particular importance is the fact that the lowest point
on the conical intersection seam,QCoIn, is correctly placed with
respect to the Franck-Condon point,QFC. The two minima on
the lower adiabatic surface,QX̃ are also in the right places, as
is the transition point,QTS. Finally, the minimum on the upper
surface,QÃ, is close to the minimum found in the quantum
chemistry calculations. Discrepancies in the energies are of the
order of 0.5 kcal mol-1, except at the minimaQX̃ where the
difference is 1.6 kcal mol-1.

QFC is the equilibrium geometry of the neutral butatriene
molecule. It is identical in both the model and quantum
chemistry by construction. The force vector at this point,FFC

in the dynamical coordinates defined in eq 15 is (0.0,-0.039,
+0.046, +0.287, -0.135) in the model and (0.0,-0.032,
-0.017,+0.292,+0.024) from the quantum chemistry. It is
thus dominated by excitation of theν14 vibration, and electronic
excitation will result in vibrational motion occurring in the
central C-C bond out of phase with vibration of the terminal
C-C bond.

Moving to QCoIn, the central C-C bond has lengthened by
0.10 Å, and the terminalRCC1 bond length has shortened by
0.04 Å. The energies in Table 3 are taken relative to the vertical
excitation energy from the neutral molecule vibronic ground
state to the upper A˜ state. ThusQCoIn lies 2.5 kcal mol-1 below
QFC, and as there is no barrier along the path between these
points, passage to the intersection will be fast.

From eq 25 and the parameters in Table 1, the model
Hamiltonian gradient difference vector,FGD, in the dynamical
coordinate system is (0.0,+0.006,+0.006,+0.502,-0.049),
and effectively lies along theQ14 symmetric stretch normal
mode. From eq 26, the derivative coupling vector,FDC, lies
parallel to the nonsymmetric normal modeQ5 (the torsion angle),
with a magnitude of 0.329. The quantum chemistry similarly
calculatesFGD ) (0.0, +0.034,-0.036,+0.530,+0.017) and

TABLE 2: Technical Details of the MCTDH Calculationsa

particles N n

θ, Q14 (41, 15) [8, 8]
Q12, Q15 (10, 10) [8, 8]
Q8 (15) [6, 6]

a The five modes were combined together into three particles for
efficiency.N is the no. of primitive basis functions used for each degree
of freedom. Harmonic oscillator DVR functions were used for the
vibrations,QR, and an exponential DVR for the torsion angle,θ. n is
the no. of single particle functions used for the wave function in the
[X̃ , Ã] diabatic states.
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FDC lies alongQ5 with a value of 0.295. These vectors define
the branching space, in which the degeneracy along the conical
intersection seam is lifted. These two nuclear degrees of freedom
dominate the dynamics, and in fact a two-mode model is able
to reproduce the system dynamics well after suitable adjustments
of the parameters to take into account the neglected modes in
an average manner.15

The pointQCoIn is clearly visible in Figure 4 as the point
where the upper and lower adiabatic surfaces meet. Looking at
the gradients of the two diabatic surfaces at this point, the model
predicts thatFCoIn

(1) ) (0.0, -0.009,-0.063,-0.719,+0.070)
andFCoIn

(2) ) (0.0, -0.003,-0.056,-0.217,+0.021), whereas
the quantum chemistry calculatesFCoIn

(1) ) (0.0,-0.044,+0.048,
-0.707,-0.022) andFCoIn

(2) ) (0.0, -0.011,+0.012,-0.176,
-0.005). As the gradients on the two surfaces lie in the same
direction, the intersection is classified as sloped.31 In comparison
to a peaked intersection, a sloped intersection means that
classically the system is expected to recross the intersection
before moving away on the lower surfaces. It also means that
there is in a minimum on the upper adiabatic surface,QÃ. This
point lies betweenQFC andQCoIn, with a depth in the region of
3.8 kcal mol-1 (quantum chemistry) and 4.3 kcal mol-1 (model)
relative to that atQFC.

Moving down onto the lower adiabatic surface, we note that
it is periodic around the torsion angle. The minima, which lie
symmetrically to either side ofθ ) 0° lower the symmetry of
the stable geometry fromD2h to D2, which is referred to as
symmetry breaking due to the conical intersection. The minima
on the lower surface lie a further 23.8 kcal mol-1 (model) or
22.0 kcal mol-1 (quantum chemistry) below the intersection.
The wave packet will thus appear in the lower state with a large
excess energy. The C-C bonds of the structures at these points,
QX̃, are close to those ofQFC, differing by less than 0.03 Å.
The terminal CH2 groups, however, have rotated relative to one
another so that the dihedral angleθ ≈ 32°. Thus after passing
through the intersection, torsional motion will begin. The
minima are separated by a low transition state atQTS with θ )
0.0°, and a barrier height of 1.8 kcal mol-1 (model) or 0.4 kcal
mol-1 (quantum chemistry). The higher barrier in the model is
due to the fact that the minima are deeper than in the quantum
chemistry calculations.

From the quantum chemical calculations it is possible to look
at the electronic origin of the conical intersection. In Figure 2
the set of p-functions incorporated in the CAS space is used to
characterize the electronic configurations of the X˜ and Ãstates.

In the lower state, an electron has been removed from the out-
of-plane orbitals, whereas in the higher energy state it is removed
from the in-plane orbitals. In a simple picture, both states have
two double bonds, but the lower state has them across the central
and one terminal C-C bond, whereas the upper state has them
for the two terminal bonds. As a result, stretching the central
C-C bond will destabilize the X˜ state, yet affecting the A˜ state
very little. Thus stretching this bond will lead from the Franck-
Condon point to a degeneracy. Compressing the terminal C-C
bonds will stabilize both states. It is also clear from this simple
picture as to whyFFC results in vibration of the central C-C
bond.

There is one further critical point on the potential energy
surfaces. When the CH2 groups are rotated so that they are
perpendicular to each other, the structure hasD2d symmetry. In
this configuration, the neutral ground-state species has two
unpaired electrons in degenerate orbitals composed of out-of-
phase alternate carbon p-orbitals perpendicular to the molecular
plane; i.e., one uses the p-orbitals from C1 and C3, and the other
uses those from C2 and C4. It lies 32.5 kcal mol-1 in energy
above the neutral ground-stateD2h structure. The first two states
of the radical cation remove these two electrons, and are thus
degenerate. From the symmetry of the molecule here, it is anE
X â Jahn-Teller intersection, and the degeneracy can be
removed by vibrations with B1 and B2 symmetry. The derivative
coupling vector is again provided by the torsion angle, which
now has B1 symmetry. The gradient difference is an antisym-
metric vibration along the carbon chain, with the central two
carbon atoms moving together relative to the terminal carbon
atoms.

The geometry of the lowest energy point on the degenerate
seam, labeledQJT, is also listed in Table 3. This second seam
of intersection between the two states is not linked to that at
the D2h geometry explored above. The two intersection seams
are in fact separated on the upper surface by a significant barrier.
The Jahn-Teller seam, however, lies 4.8 kcal mol-1 below the
D2h conical intersection, and is thus energetically accessible after
crossing to the lower surface.

Unfortunately, this Jahn-Teller seam is not present in the
model. This is partly due to the reduced coordinate set used;
the antisymmetric stretch that provides the gradient difference
is not included. More importantly, in the set of coordinates used,
the seam should be present as a crossing seam, and due to the
model adopted this is not the case. The lower surface fits that
of the quantum chemistry, but the upper surface does not meet

TABLE 3: Position of Various Critical Points on the Adiabatic Potential Energy Surface from the X̃2B2g and Ã2B2U States of
the Butatriene Radical Cation from CAS(5,6)/3-21G* Calculations and from a Model Hamiltonian Fitted To Reproduce the
CAS Surfacesa

structure RCC1 Å RCC2 Å RCH Å ∠HCC (deg) θ (deg) Q14 energy kcal/mol

FC model 1.329 1.262 1.073 117.61 0.0 0.00 0.076
3-21G* 1.329 1.262 1.073 117.61 0.0 0.00 0.000

CoIn model 1.281 1.362 1.091 120.40 0.0 -1.85 -2.287
3-21G* 1.284 1.360 1.079 118.62 0.0 -1.82 -2.467

Ã model 1.307 1.322 1.089 119.02 0.0 -1.04 -4.289
3-21G* 1.304 1.323 1.077 120.59 0.0 -1.09 -3.756

X̃ model 1.351 1.250 1.085 119.04 31.01 0.42 -26.108
3-21G* 1.346 1.248 1.074 119.12 32.17 0.35 -24.462

TS model 1.307 1.322 1.089 119.02 0.0 0.79 -24.326
3-21G* 1.358 1.237 1.073 119.15 0.0 0.66 -24.077

JT 3-21G* 1.329 1.262 1.073 117.61 90.0 -0.17 -7.220

a QFC is the Franck-Condon point,QCoIn is the lowest energy point on theD2h conical intersection seam,QÃ is the energy minimum on the upper
state,QX̃ is the energy minima on the lower state,QTS is the transition state dividing the minima on the lower state, andQJT is the lowest energy
point on theD2d Jahn-Teller intersection seam (not present in model). Geometrical parameters are those in Figure 1, andQ14 is the (dimensionless
normal mode) central C-C symmetric stretch shown in Figure 3. The zero point for the energy is taken at the Franck-Condon point, 244.896 kcal
mol-1 (9.449 eV) above the neutral ground-state minimum.
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here; the periodicity of the coupling does not allow this. As
will be seen, however, this region of space is hardly touched
by the evolving wave packet and this region plays a minor role
in the dynamics, negligible at short times.

3.2. Molecular Dynamics through the Intersection.For the
direct dynamics calculations, 80 trajectories were generated,
using points sampled on the neutral ground-state for the initial
conditions and starting the propagation on the A˜ state. Each
trajectory was propagated for 100 fs and took about 10 h on an
IBM SP2 machine.

Figure 5 shows the rate of population transfer between the
adiabatic states after the excitation. Values were calculated every
5 fs. The population at timet ) 0 is not 1.0 as the excitation
(electron removal) was taken as a diabatic process, and so the
X̃ adiabatic state is also populated directly to a small extent.
The direct dynamics results have been normalized to match the
quantum dynamics adiabatic A˜ population att ) 0. The transfer
is obviously very fast, which is due to the fact that the conical
intersection lies close to the Franck-Condon point and is
reached almost immediately after excitation. The efficiency of
the transfer is such that after 20 fs the wave packet calculations
(dashed line) indicate that less than 10% is left in the upper
state. Recurrences are then seen at 50 and 100 fs, where an
appreciable recrossing to the upper state takes place. Such
recurrences are due to the coherent nature of the interstate
crossing. As will be seen in more detail later, the quantum wave
packet is not immediately dispersed throughout phase space after
going through the intersection, but periodically regroups back
in the crossing region. Eventually, this coherence will be lost,
and the recurrences die out.

The surface hopping of the direct dynamics calculations also
show that the transfer is extremely fast, and the initial rate of
transfer matches the quantum calculations very well. Population
in this case is simply the percentage of trajectories associated
with a particular state, and so over half the trajectories undergo
a hop to the lower state within 10 fs. A small recrossing then
occurs due to hopping between the states while the trajectories
are still in the crossing region, before the population of the upper
state stabilizes at around 15%. No significant recurrence is seen
at 50 or 100 fs. The behavior of the semiclassical trajectories is
reflected in the number of hops per unit time in both directions,
shown in Figure 6. Hopping down starts after 2 fs, and hopping
up after 8 fs. After 30 fs the transfer is effectively finished and
the trajectories have moved away from the crossing region. After

this only occasional hops occur when a trajectory finds its way
back to the intersection.

On examining the trajectories, a number of distinct patterns
are seen to occur. Examples are shown in Figure 7. The
trajectories are plotted here in the space of theθ and Q14

coordinates as a single line with the starting point at the black
triangle. The plot thus shows the configurations covered in this
space, which is related to the derivative coupling and gradient
difference vectors. In addition, information is given on the
electronic state occupied during the time evolution. When the
system is in the upper electronic adiabatic state, the trajectory
is a dashed line, whereas when it has switched to the lower
state the trajectory is a full line. As the majority of the time is
spent in the lower adiabatic state, the lower potential energy
surface is shown as a contour plot. Full circles,b, show where
a hop down occurs, and open circles,O, denote a hop up. For
example, (a) shows a trajectory that starts close to the Franck-
Condon point at (0, 0). It evolves initially on the upper surface
along Q14 in a negative direction until a hop down onto the
lower surface occurs at the black circle. This point is close to
the conical intersection, which lies at the point (θ, Q14) ) (0.0,
-1.9). After this time, the trajectory explores the double minima
of the lower surface.

All the trajectories approach the crossing region within a few
femtoseconds. Of the 80 trajectories, 39 cross to the lower state
directly with a single hop and then explore the lower surface,
as shown in (a). In a different class, 30 trajectories undergo a
double hop while traversing the crossing region, shown in (c).
This is due to the sloped nature of the intersection, so that the
trajectory crosses to the lower surface and then travels up the
repulsive wall. This forces it to return to the crossing region
where it crosses back to the upper state. After a short time it
then returns to the lower state and moves away from the
intersection. Five trajectories undergo multiple crossings while
in this region, and an example of this is shown in Figure 7d.
Finally, six trajectories do not cross at all, and remain trapped
on the upper surface.

After crossing to the lower state, the trajectories explore the
minima. In eight cases after a number of vibrations on the lower
surface, the trajectory finds its way back to the intersection and
crosses back up, and then down again. This is exemplified in
Figure 7b. Five further trajectories also cross back to the upper
surface after a long excursion on the lower one, but do this via
the D2d Jahn-Teller intersection atθ ) 90°. An example of

Figure 5. Population of the upper, A˜ 2B2u, adiabatic state of the
butatriene radical cation after the removal of an electron from the neutral
ground state. Full line: results from 80 direct dynamics trajectories
with surface hopping. The initial population of 0.84 is the magnitude
of the adiabatic component in the initial diabatic wave packet. Dashed
line: results from wave packet dynamics on a five-mode model.

Figure 6. Total number of hops between states in a set of 80 trajectories
over the coupled potential energy surface of the X˜ 2B2g/Ã2B2u states of
the butatriene radical cation as a function of time. The hops are collected
in 1 fs bins. The upper boxes show the hops down from the upper
state (left-hand axis), and the lower boxes the hops up from the lower
state (right-hand axis).
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this can be seen at the end of the trajectory shown in (c). This
is an indication that this second intersection seam may indeed
be important for the system dynamics at longer times.

The time evolution of the three significant geometrical
parameters of the molecule are plotted in Figure 8. The values
from the direct dynamics calculations are averages over the 80
trajectories. For the quantum dynamics, the results are expecta-
tion values of the density along the appropriate coordinates. For
the torsion angle, the value is calculated over the range 0f π.
In general, the semiclassical trajectories show good agreement
with the quantum dynamics results, especially over the first 50
fs.

As expected from the analysis of the potential energy surface
above, initial motion is along the normal mode vector for the
ν14 vibration, i.e., extension of the central C-C bond and
compression of the terminal C-C bond. This motion occurs
with a period of approximately 15 fs, which corresponds to the
ground-state period of this vibration. The average value of the
torsion angle starts to change after approximately 5 fs. Excitation
of this mode is related to passing through the intersection, and
thus this delay is due to the time taken for the wave packet to
reach the intersection.

For the model Hamiltonian, a time period for the torsional
motion can be estimated from the leading term in the diabatic
potential, eq 13. Thus

Using r0xω5mH ) 4.35 au, this gives a frequency of ap-
proximately 756 cm-1, or a period of 42 fs. This clearly matches
the periodicity seen in the quantum dynamics calculations. The
semiclassical calculations appear to have a slightly longer period

for this motion of approximately 55 fs. Much larger motion is
also seen in this degree of freedom in the trajectory calculations.

For a more detailed comparison of the molecular dynamics,
we will now look at the snapshots of the evolving wave packet.
Figure 9 shows the results from the quantum dynamics
calculations, showing the wave packet as it traverses the conical
intersection as a series of snapshots. The adiabatic density is
plotted in the space of theθ andQ14 modes, integrating over
the remaining degrees of freedom:

The two columns show the density for the two states. The upper
panel in each column shows the potential energy surface. Att
) 0, the density is mostly on the upper surface, but as mentioned
above, the lower surface is also lightly populated. Note that for
reasons of scale the top of the packet is cut off. As time
progresses, the wave packet moves across the upper surface,
driven by the forces on the nuclei due to the creation of the
nonstationary wave packet by the excitation process. Due to
the conical intersection, transfer of population starts im-
mediately, and, as seen in the populations in Figure 5, this is
almost complete after 10 fs.

As the population vanishes from the upper state, it appears
in the lower state emerging from the region of the conical
intersection. The wave packet has a definite directionality to it,
and moves around the intersection into the two minima. The
motion after 10 fs sees the wave packet on the lower surface
split into two parts and spread out. By 40 fs the wave packet is
moving back together at the intersection. This is the start of
the recurrence.

To compare this with the picture from the direct dynamics,
the wave packet dynamics is shown again in Figure 10. This

Figure 7. Example trajectories demonstrating the possible evolution of the butatriene radical cation after formation in the A˜ 2B2u state. (a) Direct
interstate crossing followed by exploration of the lower surface. (b) Interstate crossing with a recrossing occurring after exploration of the lower
surface. (c) Double crossing before exploration of the lower surface. (d) Multiple crossings. The trajectories are plotted in the space of theθ and
Q14 coordinates, and the lower adiabatic potential energy surface is shown in each case as a contour plot. The1 shows the start point. Full circles
b show where a hop down occurs, and open circlesO denote a hop up. A dashed section of trajectory is where it is running on the upper surface.
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time, the trajectories of the direct dynamics calculations are
shown as crosses superimposed on the wave packet contours,
which correspond to the picture in Figure 9. At the start, a dense
cluster of points indicate that the direct dynamics is sampling
the space in the region of the initial wave packet. The initial
motion follows the wave packet and hops to the lower surface
take place in the region of the intersection, which lies at (θ,
Q14) ) (0.0,- 1.9). The direct dynamics thus simulate the wave
packet reasonably well in the time scale of the transfer. The
dynamics after transfer are, however, different. The quantum
wave packet moves diagonally away from the intersection,
before dividing into two parts in the two minima. In contrast,
after crossing to the lower surface, the trajectories spread out,
and after 40 fs are seen to cover the whole region and do not
regroup.

4. Conclusions

We are presently at the start of investigating the use of direct
dynamics in the study of nonadiabatic processes, and the aim
of this study was to see how well simple direct dynamics
calculations perform for the description of a realistic process.
The system chosen, the removal of an electron from butatriene
is an ideal test case as the topology of the surfaces is such that
population transfer after excitation to the upper state starts
immediately. At the level of theory used, CASSCF/3-21G*,
state-of-art direct dynamics as implemented in the GAUSSIAN
program are not prohibitively expensive for this molecule. As

a result, it is possible to run a number of trajectories, which is
necessary for a comparison with accurate quantum dynamics
calculations.

The results presented here show that the direct dynamics
trajectories using surface hopping are qualitatively in agreement
with the results of wave packet propagation calculations. The
time scale for population transfer is similar, and the final
populations also reasonable. There is a difference, however, in
the pattern of the recurrences, when population is transferred
back to the upper state. In the semiclassical calculations, the
sloped nature of the intersection means that trajectories recross
the intersection region immediately after hopping down. In
contrast, the quantum dynamics calculations show recrossings
at regular 50 fs intervals.

One of the strengths of the method is that the assumptions
usually made in the models used for studying the dynamics of
large molecules, such as ignoring certain modes or choosing a
pre-defined form for the potentials, are not made here. In the
model used here, for example, only five degrees of freedom
are included. This Hamiltonian is complete to first-order vibronic
coupling and is good for the description of the dynamics during
the initial crossing of the conical intersection. It may, however,
be less accurate for the dynamics at longer times (over 100 fs).
In particular, dephasing of the wave packet will be suppressed.
In the full system, energy will be transferred slowly to the

Figure 8. Time evolution of the geometrical parameters of the
butatriene radical cation after formation in the A˜ 2B2u state. Upper
panel: terminal C-C bond. Middle panel: central C-C bond. Lower
panel: dihedral angle. Full lines are the average value from a set of 80
trajectory surface hopping direct dynamics calculations. Dashed lines
are expectation values from wave packet dynamics calculations, with
the dihedral taken in the range 0-180°.

Figure 9. Wave packet dynamics of the butatriene radical cation after
its production in the A˜ state, shown as snapshots of the adiabatic density
(wave packet amplitude squared) at various times in the space of the
θ andQ14 coordinates. The right-hand plots relate to the A˜ , and left-
hand plots the X˜ adiabatic states. The top panels shows the adiabatic
potential energy surfaces. Remaining panels show the density at various
times. The initial structure represents the neutral ground state vibronic
wave function vertically excited onto the diabatic A˜ state.
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degrees of freedom ignored here. This will result in the wave
packet spreading out more than the five-mode model will allow.
The recurrences seen would thus be reduced in intensity, and
die out quicker if all the degrees of freedom were included.
The basic features of the quantum dynamics would, however,
not be altered if all modes were included.

Another factor missed in the model, which may affect the
long-time behavior of the system, is that the potentials are not
fitted to reproduce the Jahn-Teller intersection at the perpen-
dicularD2d geometry. If this seam is important for the dynamics
of the system, the quantum dynamics calculations will com-
pletely miss this effect. The direct dynamics of course will let
the system cross at this seam if it finds it, and the calculations
indeed indicate that the system is finding its way to this seam
at later times.

The comparison of the time evolution of the densities,
however, indicate that the direct dynamics do not reproduce
the details of the quantum dynamics during the initial crossing
through the conical intersection. In particular, the trajectories
do not move away from the intersection on the ground state in
the same manner. This may be due to differences in the surfaces
used in the two calculations leading to different dynamics. It
is, however, more likely to be a consequence of the lack of
nuclear coherence during the nonadiabatic process: the semi-

classical trajectories arrive on the lower surface in a manner
uninfluenced by each other. In future work we intend to address
this problem by the use of more sophisticated direct dynamics,
probably using a Gaussian wave packet based method to include
some quantum character into the nuclear dynamics.
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Figure 10. Molecular dynamics of the butatriene radical cation after
its production in the A˜ state, shown as snapshots of the adiabatic density
at various times in the space of theθ andQ14 coordinates. The right-
hand axis gives the central C-C bond length, in Å, corresponding to
theQ14 coordinate. The top panels shows the adiabatic potential energy
surfaces as contour plots. Remaining panels show the density at various
times. The contours plot the results from wave packet calculations (see
Figure 9), and the crosses are the points on the trajectories from the
direct dynamics.
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