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A semiclassical direct dynamics method for nonadiabatic systems is tested by comparing with quantum wave
packet dynamics, looking at the molecular dynamics of the butatriene molecule after formation of the radical
cation in the first excited, Astate. There is a conical intersection coupling this state to the cationic ground

state, X and this plays a major role in the system evolution. The direct dynamics study consists of 80
trajectories, with the potential energy surfaces calculated on-the-fly using a complete active space (CASSCF)
electronic wave function. The quantum dynamics used a model Hamiltonian and the multiconfigurational
time-dependent Hartree (MCTDH) method to solve the time evolution of the nuclear wave packet. The results
show that the methods give a similar description of the initial part of the dynamics, with a similar time scale

for the interstate crossing. A qualitatively different behavior is, however, seen after crossing to the lower
adiabatic surface, with a recurrence in the quantum dynamics not present in the direct dynamics. The direct
dynamics also indicates the possible importance of a second intersection seam, which is not present in the
model used for the quantum dynamics.

1. Introduction surface in these unexplored regions is a prohibitive waste of
effort.

The presence of a conical intersection between two electronic . . . . .
One problem applying direct dynamics to nonadiabatic

states can have a profound effect on the time evolution of a ; is that th i hemist thod dt lculat
molecular system. This is particularly true after photoexcitation systems 1S that In€ quantum chemistry method used to calculate

to the upper state: if the intersection is reached, nonradiativethe potential energy surface must be of reasonable quality on

decay to the lower state occurs on an ultrafast, femtosecond an excited state. Th? second p“’b'er.“ is _the dynami_cs algorithm
! 'to be used, in particular the question is how to include the

time scale. An understanding of the dynamics of such a process . ; .
nonadiabatic coupling. Molecular systems are guantum me-

is crucial for an understanding of the mechanism of the reaction hanical i i d the d . q ibed by the ti
and the products formed, as relaxation to the lower state takesC1anical in nature, and the dynamics are describea by the ime-

place in a coherent manner. Not only the topology of the conical gepe"_‘gegt bSchmggler elqu%non. The mlj(dte' Sh?l.”d t_hust_ be
intersection but also the initial conditions provided by the escribéd by a delocalized wave packet evolving in time.

experimental preparation of the system and the path taken toCatIculgtllng the potefntlallon-trlle-lily, hO\ivev?lr, rReans thall;[ the
the intersection play a role in the final outcome. Here, molecular potential energy surtace 1S only known locally. AS a resuit we

dynamics simulations play a significant role in the description turn to sem_lcla_ssmal methods, which use a de_sclrlpno_n based
and visualization of these nonadiabatic processes. on trajectories in a phas.e space. In a recent af review
A computer simulation of molecular dynamics (MD) needs the field of direct dynamics, discussing both these points.

two ingredients: a potential energy surface and an efficient way . Thle %‘.JeStt'o dn to b‘? addretf]szdfln m's gaper_ '? hOWfQOOd ISa
to propagate the system from the initial conditions over the simpié direct dynamics method for the description ot a nona-

. ) i i 2 i i
surface. In this study we shall focus on the evaluation of the diabatic process? The most popular method for the semiclassical

potential energy surface. Traditional dynamics methods,whetherdynalmICS of nonadiabatic systems is the trajectory surface

the nuclei are treated classically or quantum mechanically, needhopp'ng ”?etho.é-'” this, trajectories run over the upper surface
the potential energy surface as an analytical expression. Thisum'l a region with strong nonadiabatic coupling is reached. Here

requires the global evaluation and fitting of the potential energy the trajectories hop to the lower surface with a probability related

throughout coordinate space, a long and tedious process evell® th? strength of th_e coupling, SO simulating the interstate
for small molecules. For more than a few degrees of freedom Crossing. An altgrnatlvg mthod, which has already b.ee.n used
the accurate evaluation becomes a hopeless task, and model':g.d'r.eCt dynamics StUd'.e.S' is the spawning metﬁb@'hls n
must be used. prln(_:lple treats t_he nuclei in a fully quantum mechanical manner

An alternative is to calculate the surface as and when it is bu'to\|sdf:0mp3tat|on'ally n?ore' ﬂemangﬂng. f hoobing h
required during the dynamics. This “direct dynamics” appréach rect dynamics algorithm using surface hopping has
has much appeal due to the great flexibility it would offer in already l_)een implemented and_ applied to a numbe_r of systems,
the study of molecular dynamics. For large systems it is also g 0oth using full complgte active-space self-con5|stent.f|eld
must for reasons of efficiency as the space not visited during (C{'\SSCE) vgav&,\;l\J/nE;:tlor‘igharéd ﬂ:? rr]no.lecullar mec(?zglésc-':
the dynamics is enormous, and calculating the potential energyVa ence bond ( ) method, which simulates a

method® 12
" Present address: Theoretical Chemistry, University of Cambridge, N these calculations, particularly using a full CASSCF wave
Cambridge, U.K. function, it was not possible to run more than a few trajectories.
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Figure 1. Geometrical parameters defining the structure of the
butatriene molecule.

FERNET R

X A
Figure 2. Orbitals involved in the coupled 2B,4/A2B,, states of the
butatriene radical cation. The active space used is effectively the six
p-orbitals on the carbon atoms orthogonal to the carbon axis. A hole is
denoted by at, and an unpaired electron by@ — shows a bond.
The X?B,y has had an electron removed from the orbitals in the plane
perpendicular to the molecular plane, whereas tHgyfstate is formed
by removing an electron from the orbitals in the molecular plane.

Figure 3. Important vibrational modes involved in the dynamics of
the butatriene radical cation in the coupletBY/A?B,, electronic states,
defined by the neutral ground-state normal modes calculated at the
equilibrium D2, geometry Qs is the coupling mode with Asymmetry
and is related to the torsional motion. The remaining four modes are
totally symmetric vibrations. Of particular importance @4, the
Although the calculations were able to provide dynamical Symmetric vibration of the central-€C bond.
information to enhance understanding of the chemistry taking
place, for accurate dynamics using surface hopping a large
number of trajectories should be run. In this work we aim to
test our trajectory surface hopping direct dynamics scheme by
running a reasonable number of trajectories and comparing the
results to full quantum molecular dynamics calculations. As a
test case we take the formation of a butatriene radical cation in
the A2B,, state. In the photoelectron spectrum, the band arising
from this state is linked to that from the2®,, state by a
structured spectrur¥, which is known to be duge to a co¥1ical 2. Theory and Methods
intersection between theth As a test system it is ideal. It is a 2.1. Electronic Structure and Direct Dynamics Calcula-
small organic molecule with a fairly simple electronic structure, tions. The direct dynamics and quantum chemistry calculations
and the quantum chemistry should be reasonable with a smallwere made using a development version of the GAUSSIAN
basis set. The conical intersection also lies very close to, and isprogram}’ The potential energy, gradient, and force constants
directly accessible from, the FraneKondon region so that only ~ for the butatriene radical cation ground and first excited states
short simulations are required to describe the nonadiabaticwere evaluated using a CASSCF method. The active space
effects. As a prototypical conical intersection, it is also a good chosen was to distribute the-electrons (six for calculations
test of the method with physical relevance. on the neutral species and five for the radical cation) in the six
Shown in Figure 1, butatriene §8,) is a linear planar  m-orbitals. As can be shown by localizati#hthe active space
molecule withD,, symmetry at the neutral ground-state equi- used can be thought of as comprising the six carbon p-orbitals
librium geometry. Figure 2 sketches the orbitals and Figure 3 that do not contribute to the-bonding framework. Each carbon
the important nuclear modes for the system to be studied. In contributes a p-orbital perpendicular to the molecular plane,
butatriene, three-orbitals lie perpendicular to the carbon axis, while the central two carbon atoms also provide two p-orbitals
and formation of the %B,4 and By, states of the radical cation  that lie in the plane. The active space used is sketched in Figure
results from removal of an electron of the highest two occupied 2. The calculations are labeled CAB)/X, whereN is the
orbitals. These lie at right angles to one another, with the X number of electrons arld the number of orbitals in the active
state being formed by making a hole in a molecular orbital that space, and X denotes the basis set used. In all the results
lies above and below the plane of the molecule and tistate presented here, a basis set of 3-21G* was used. As we are
hole being in a molecular orbital that lies in the plane. Torsional comparing theory with theory, the basis set used is not critical.
motion around the axis leads to vibronic coupling between these That it at least provides a reasonable description of the butatriene
states. The central-GC symmetric stretch vibration also plays molecule was shown by comparison with 6-31G* calculations
a major role in the vibronic coupling, providing the second atanumber of geometries, which showed no major differences.
degree of freedom required for the formation of a conical  For the semiclassical trajectory calculations, a set of points
intersection between the states. in phase space must first be generated to represent the nuclear
The quantum dynamics were made using a vibronic coupling wave packet. This was done by sampling the neutral ground-
model Hamiltonia®? for the coupled XA states in the butatriene ~ state using the normal-mode sampling algorit§#. Half a
radical cation. This model has been successfully applied to aquantum of energy was put into each normal mode and a set of
number of problems in which the system passes through apositions and momentum set up by random sampling, with a
conical intersection within a few femtoseconds after excitation. correction made to scale the initial harmonic guess to the true
In a recent paper, Cattarius et'éket up a model Hamiltonian ~ potential surfaces. In this way the zero point energy of the
for the coupled states, treating five nuclear degrees of freedomground-state system is approximately included. A more faithful

explicitly. This model, which is complete to first order in the
coupling, reproduces the spectrum for this system very well,
and hence describes the major features of the molecular
dynamics. Here, to use it as a comparison for the direct dynamics
calculations, we reparametrize this Hamiltonian to reproduce
the CASSCF potential energy surfaces.
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representation of the quantum wave packet would be to sampleis provided by off-diagonal elements in the potential operator
a Wigner, or similar, distribution that maps the quantum wave matrix, W. This contrasts to the adiabatic representation in which
packet onto phase spagelhis would, however, mean that even .

more trajectories would be required, and experience seems to H(Q) =Tyl - A(Q) + V(Q) 3)
show that the classical distribution taken here is reasonable. ) ] ) )

The wave packet was then propagated using a trajectoryWhere the diagonal matn)r_((Q) contains the solutions to the
surface hopping method. Starting on the upper adiabatic suncace'clamped n_ucleus electr_onlc Hamlltor_uan at nuclear coordinate
each point evolves along a classical trajectory. The integration Q- @nd A is the nonadiabatic coupling operator, a nonlocal
scheme for the trajectories was the Helgak@hen algo- operator respon&ble for coupling motion on the d|fferent
rithm 122 This uses a harmonic approximation to the surface to adiabatic potential energy sgrface. Th_e two re_presentatlons are
generate a predictor step, followed by a corrector step using aconn_ected by a trans_formatlon that diagonalizes the potential
fifth-order polynomial fit to the true surface. Despite the need Matrix at every point in space
for calculating the Hessian matrix and its eigenvalues at each T
step, this method is efficient due to the very large steps that V(Q) =S(Q) W(Q) S(Q) (4)
can be taken.

The probability of hopping between surfaces was obtained
from the state populations calculated by propagating the
electronic wave function. Using the basis of state functions,
{yi}, the electronic wave function can be represented by the
vector of coefficientsa(t). This vector can then be propagated
in time by solving

Thus the diabatic representation assumes that the transformation
is such that the nonlocal nonadiabatic operator is transformed
into the local diabatic potential matrix. For more details see,
e.g., refs 2 and 15.

The vibronic coupling model expresses the potential matrix
by Taylor expansions about a suitable po®g, and zeroth-
order potential W

a(t + 7) = exp(—iHr)a(t) )

whereH is the electronic Hamiltonian in the state function basis.

The squares of the vector elements give the population of the

electronic states as a function of time (see ref 23 for more whereHy is the usual clamped nucleus electronic Hamiltonian,

details), and a hop between surfaces was performed if theg, is the diabatic electronic wave functions, and the integrals

probability for the populated state drops below 0.65. and derivatives are evaluated at the p@gt The arbitrary phase
Smaller steps are needed for the time evolution of the of the diabatic functions is taken care of by setting them equal

electronic wave function than are required for the integration to the adiabatic functions &o. As a result,

of the nuclear equations of motion. For this reason, and as the .

probability of hopping is negligible until the surfaces become :

close, the electronic wave function propagation is only started W, =E + W+ ZKSPQQ + .. (6)

when the energy gap between the states goes below a limit of “=

0.04 hartree. It is then stopped when the gap goes back above f

this value. To save computational effort, the Hessian matrix is wW,=S5 190 + .. (7

updated rather than recalculated at each step during this time. ! QZ\ * e

As is usual in surface hopping methods, the energy is conserved

after a hop by correcting the momentum in the direction of the whereE; = Vi(Qo) is the adiabatic energy &o, and« and1

derivative coupling vectoF; = [;| Vi (4 After a hop takes  are the expansion coefficients defined in eq 5.

place, a wait of 5 fs is made to allow the system to adjust to  The situation to be described is an excitation from the neutral

the new surface before testing for a hop again. ground state into the coupled manifold of radical cation states.
When the surfaces are close in energy, state-averaged orbital§-or this reason,Qo is taken as the neutral ground-state

have to be used to ensure convergence of the CASSCF waveequilibrium geometry, which is the FranelCondon point on

function. When this is not the case, however, non-state-averagecexcitation, ano\/\/i‘o) for both states is the neutral ground-state

orbitals should be used. To make a smooth transition betweenpotential energy surface. Taking the latter in a harmonic

the two regimes, the weighting factor for the averaging was approximation, the natural coordinates for the system are then

changed over a number of steps. Assuming that the system isthe neutral ground-state normal modes, i.e., the eigenfunctions

initially in state 2 outside the nonadiabatic region, the weights of the Hessian (potential second-derivative) matri®QatScaling

(0.0, 1.0) are used. Once a gap of 0.05 hartree is reached, thehese so they become dimensionless (mass-frequency weighted)

weights were changed by 0.1 over 5 steps until fully state- coordinates, the zero-order potentials are

averaged orbitals weighted (0.5, 0.5) were used. After moving

'To
W, — W%, = Z[EWHM@@Q& e

back out of the nonadiabatic region the weights were again Wy

. : WO =§5—Q2 8)
smoothly reversed so that the wave function for a single state z 5
was optimized. «

2.2._Vibrc_)nic Coupling Model Hamilto_nian. 'I_'o de_scribe a and the kinetic energy operator is
nonadiabatic system, we start by assuming a diabatic representa-

tion; i.e., the Hamiltonian is written in matrix form as . 0, P
A W=) —— 5 )

H(Q) = Ty1+W(Q) @ T 250,
where Ty is the nuclear kinetic energy operator ahds the Note that atomic units have been implicitly used with= 1.

unit matrix. Matrix elements refer to the electronic states A huge simplification is now obtained by considering the
accessible to the system, and coupling between electronic statesymmetry of the coordinates and electronic states. The integrals
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for the coupling constants and A are only nonzero if the
symmetry product of the electronic wave functiofsand ¢
and the nuclear coordinat®,, contain the totally symmetric

irreducible representation:
L, ®I DA (20)

Thus to first order (linear vibronic coupling) only totally

symmetric coordinates appear on the diagonal, and only modes

of a particular symmetry appear on the off-diagonal.

In the butatriene radical cation, at the neutral ground-state
equilibrium geometry the electronic states of interest @@,X
and AB,,. Given that the point group at this geometryDis,
the model complete to first order includes five degrees of
freedom. These are the four totally symmetric vibrational modes,
vs, V12, V14, @ndvys, Which provide the on-diagonal terms, and
the one vibrational mode with fssymmetry,vs, which provides
the off-diagonal coupling. All other nuclear coordinates couple
only to second order with bilinear and quadratic terms, which
have been shown to be small in butatriéh&leglecting these

higher order terms, the potential energy surface for these 13

modes is simply the zero-order Hamiltonian, the sum of the
neutral ground-state harmonic functions. On excitation, these
modes are thus not excited and play no role in the initial
molecular dynamics. In general, it is found that these weak
second-order terms play a role at longer times, typically after a
few hundred femtoseconds, by providing a bath into which the
energy slowly flows, causing the wave packet to spread out
and dephase.

A more realistic model for the dynamics is obtained if the
coupling mode is taken as the dihedral angleThe transfor-
mation from the normal mode coordinate to the torsion angle
is

Qs — Foy @smy0 11)
whererg is the distance from the hydrogen atom, which has
massmy, to the carbor-carbon axis, anas is the frequency
of the neutral ground-state normal vibration. The kinetic energy
operator for this degree of freedom in eq 9 is then transformed

2
Ws 9

2 9Qy2

1 &

2l 562

12)

where the moment of inertia around the torsion anglé is
2myro?. The zero-order potential in eq 8 is also replaced by the
trigonometric series

Wg
—QS2— sinf(nf) (13)
oI YA,
and the linear intrastate coupling by the term
A5Qs = Agf gn/ WMy, Sin O (14)

The parameters for this model evaluated previodsigsult
in a spectrum in very good agreement with the experimental
one. In particular, the intensity and structure between the
expected bands due to the breakdown of the B@ppenheimer
approximation is reproduced very well. The neglect of the other

Worth et al.

TABLE 1: Parameters Used in the Vibronic Coupling
Model Hamiltonian?

mode w K@ «@

Qs(1Ag) 0.1117 —0.0456 —0.0393
QuA2Ay) 0.2021 0.0399 0.0463
Qu14(3Ag) 0.2723 —0.2139 0.2877
Qus(4Ay) 0.4102 —0.0864 —0.1352
0(Av) An 1 =0.3289

n=1 1.4823

n=2 —0.2191

n=3 0.0525

n=4 —0.0118

E. = 8.5037 E, = 9.4523

2The coordinates are the neutral ground-state totally symmetric
normal modes and the torsion angle. See section 2.2 for details. For
comparison with earlier wofR values are in eV.
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Figure 4. Potential energy surfaces for théB¢yA2B,, states of the
butatriene radical cation in the space of the symmetric stretch vibration,
Qu4, and the torsional modé, as given by the linear vibronic coupling
model Hamiltonian. The upper cone belongs to theaad the lower
sheet the Xadiabatic electronic state. Critical points are marked: FC
is the Franck-Condon point, Coln the lowest energy point on the
conical intersection seam,f and Xui» the minima on the two surfaces,
and TS the transition state point.

range of geometries. The root mean-square deviation (RMSD)
between the model and quantum chemistry values was 0.06 eV
over 106 points. These parameters are listed in Table 1.

2.3. Critical Points and Vectors. A dynamical process is
dependent on the topology of the potential energy surface
traversed, and its description can be made using critical points
and vectors on the surface. The obvious coordinate system in
which to work are the dynamical variables of the model
Hamiltonian presented above. These are a reduced set of nuclear
coordinates that can describe the major features of the nuclear
dynamics in terms of the molecular motion, and comprise the
torsional angle and the four symmetric neutral ground-state
normal-mode coordinates. To define points (or other vectors)
on the surfaces, we will use the vector with components

Q = (6, Qg Q12 Q14 Q15

where Q; are the dimensionless normal-mode coordinates
introduced in the last section, associated with the vibration
of the neutral species, atthe torsion angle in degrees. These

(15)

modes in this process is thus justified. In this work, the model are shown in Figure 3. To connect to the molecule, results will
potential energy surface must match as closely as possible thealso be given in terms of the geometrical parameters shown in
potentials used in the direct dynamics to allow a comparison Figure 1. The critical points are shown graphically in Figure 4.
of the two methods. The parameters were thus reevaluated by The first point of interest is the FranelCondon pointQrc,
fitting to energies calculated at the CAS(5,6)/3-21G* level at a the center of the initial wave packet. The vector of force away
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from this point,Fgc, is the line of initial motion in a classical
picture. The upper adiabatic surface is then characterized by
the position and depth of the minima@k, and by the conical
intersection seam through which the interstate crossing occurs.

J. Phys. Chem. A, Vol. 107, No. 5, 200825

structure on the lower cationic surface is found by optimization

of the molecule in the planab2, symmetry. See ref 27 for

further details of how to characterize a potential energy surface.
One of the advantages of the linear vibronic coupling model

To characterize the conical intersection, we use the lowestis that analytic expressions can be obtained for the critical points.
energy point on the sea@con, and the gradient difference and The Franck-Condon pointQrgc is the pointQo, and the force
derivative coupling vectorsFep and Fpc, respectively. The  Frcis the vector of linear coupling coefficients, £)«{2,«2,
energy difference betweecon andQrc dictates whether the @y The expression for the position of the lowest energy point
intersection is energetically accessible to the excited system,on the conical intersection seam is more complicated but is given

whereas the two force vectors provide the “branching space” iy section 3 of ref 15. Using the parameters from the model to
in which the degeneracy of the seam is lifted. After changing gefine

states, the wave packet will bifurcate in this space as it moves
away from the conical intersection. Finally, the minima on the
lower surface are the points at which the system could end if

the energy is dissipated to the environment. They thus define
the configurations accessible to the photoexcited molecule. Inand
butatriene there are two minima, denot€k, which are

0. =) o=@ ) @2)

equivalent due to symmetry. They are separated by a transition 5a2 0404 1
state atQrs. =5 F= A=—(E,— E) (23)
Before progressing, the vectdfsp andFpc will be defined. & O « W 2

A conical intersection occurs when two potential energy surfaces . . .
become degenerate. At such a point it is easier to describe '[hethe coor.dlnates of the lowest energy point on the conical
system by expressing the Hamiltonian using a diabatic electronicNtersection are
basis, eq 2. The adiabatic surfaces are then given by

V, = %(Wll + W,,) £ /AW + W2

where AW = 1/2(\W., — Wi;). We now move to a point of
degeneracy, which occurs when

0

o O,

o

F-A
D

QCoIn,(x = (24)

(16) w(l w(l
Note that only the symmetric modes are changed, all other
coordinates retain the value at the Fran€london point.

To find the gradient difference and derivative coupling
vectors, the origin of the coordinate system can be shifted along
the totally symmetric coordinates @cqin. Here, the elements

of the vectors are given by

AW=W,,=0 (17)

Here the diabatic wave functions are set equal to the adiabatic

functions. Making a Taylor expansion of the diabatic matrix « _w_1 .2 _ .0
elements around this point, these terms can be written to first a0 =0 = E(Ka —Kg) (25)
order in vector notation as
Foc=1 26
AW = FGD'Q (18) DC a ( )
where
W, = Fpe'Q (29)
() — ()
with the components of the vectors defined by Ka “o + ©Qcoima (27)
" 9 An analytic expression for the position of the transition state
Fep = 5AW (20) on the lower surface is also found by minimizing the energy of
& the lower adiabatic surface wiith= 0°, i.e.
0
bc = ﬁwlz (21) KS)
o

QTS,G. =T (28)

o
where the derivatives are evaluated@oin. Moving in then

— 2-dimensional space orthogonal to the vectegs andFpc, where oo again refers to one of the symmetric vibrational

the degeneracy of the states is retained as eq 17 holds, whereagoordinates. Unfortunately, in contrast to the case when the

moving in this space the degeneracy is lifted. From eq 16 it coupling mode is treated using a harmonic oscillator, the Fourier

can be seen that in the branching space, the adiabatic potentiaseries used for the torsional angle diabatic potential means that

energy surface has the form of a double cone, hence the name simple analytic expression is not possible for the minima on

conical intersection. the adiabatic surfaces. These were found by numerical optimiza-
All these points and vectors on both radical cation potential tion.

energy surfaces can be calculated using CASSCF methods. 2.4. Wave Packet PropagationThe wave packet dynamics

Transformation to the dynamical coordinates was made usingwere carried out using the very efficient MCTDH method as

the normal modes calculated at the neutral ground-state mini-implemented in the Heidelberg MCTDH pack&®§e3®2In this,

mum at the CAS(6,6)/3-21G* level. The minima on both the nuclear wave function is expanded in a time-dependent basis

surfaces were located using standard energy optimization,set

whereas the lowest energy point on the conical intersection

involves a constrained optimization to find the lowest energy (Q;...Q;,t) = z z Aj(fi)ljf(t)qu(ll’“)

point along the degenerate se&m?® Finally, the transition o j1-df

Q1) (QpY) (29)
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TABLE 2: Technical Details of the MCTDH Calculations? ground-state torsional potential. This potential function is the

Fourier series eq 13 with the coefficients given in Table 1. As

particles N n ! : .

6.0 (a1, 15) 8. 8] the matrix elements of the Hamiltonian operator relate to the
dlz 1515 (10' 10) [8’ 8] diabatic representation, the initial wave packet for the dynamics
Qs (15) [6, 6] is formed simply by putting this wave function in the desired

state by setting the coefficient for this configuratia?,, to
1.0 and all the other coefficients to zero.

Many properties can be directly obtained from the time-
dependent wave function, such as expectation values of
coordinates. An exception is the adiabatic state populations
required for the comparison with the direct dynamics surface
) ) hopping calculations, which requires that the wave packet is
The indexa refers to the electronic states of the system, and so expressed in the adiabatic representation. For this the wave

a different basis set is used for each state. The ingicgs ... packet must be transformed using the matrig3) defined in
label the basis functions. Both the expansion coefficients and eq 4. These are complicated multidimensional operators and

the functions are then propagated by equations of motion derived 5, only be applied to the wave packet on the full product

from a variational solution of the time-dependent Sclimger primitive grid. The wave packet was thus saved every 5 fs, and

equation. As a result, the basis functions, known as single- oy these were transformed to the desired representation.
particle functions, optimally describe the evolving wave packet

at all times. For details of the equations of motion and how 3 Resuyits
they are solved, see ref 30.

The single-particle functions are themselves described by one- 3.1. Characterization of the Potential Energy Surfacewe
dimensional time-independent basis sets using a discrete variableétart by examining the topology of the adiabatic potential energy
representation (DVR). For the normal modes in the vibronic surfaces. A cut of the surfaces from the analytical model
coupling Hamiltonian, a harmonic oscillator DVR is used. For Hamiltonian is shown in Figure 4. It is taken at the lowest energy
the torsional angle, an exponential DVR is used. This automati- point of the conical intersection seam in the space ofQhe
cally introduces periodic boundary conditions for this degree andé degrees of freedom, and the critical points are marked.

2The five modes were combined together into three particles for
efficiency.N is the no. of primitive basis functions used for each degree
of freedom. Harmonic oscillator DVR functions were used for the
vibrations,Q., and an exponential DVR for the torsion anglen is
the no. of single particle functions used for the wave function in the
[X, A] diabatic states.

of freedom. Details are given in the appendices of ref 30.

The molecular geometry and energies at the critical points are

The single-particle functions need not be one-dimensional also listed in Table 3, both from the model Hamiltonian and
as indicated by eq 29, i.e., they describe more than one degredhe quantum chemistry calculations. Despite the simplicity of

of freedom. By using this flexibility, the computational require-

ments can be significantly reduced. The computational require-

ments scale approximately witi#inP*1 4+ pnNg, wherep is the
number of sets of single-particle functiomsis the number of
functions, and\ is the number of grid points used to describe

the model, it is seen to reproduce the quantum chemistry very
well. Of particular importance is the fact that the lowest point
on the conical intersection sea@gon, iS correctly placed with
respect to the FranekCondon pointQrc. The two minima on

the lower adiabatic surfacQx are also in the right places, as

the functions. Thus by combining degrees of freedom together, is the transition pointQrs. Finally, the minimum on the upper

p is made smaller and the number of expansion coefficights
reduced. In doing this, however, the number of grid poiNts,

surface,Qa, is close to the minimum found in the quantum
chemistry calculations. Discrepancies in the energies are of the

increases as the product primitive grids for the combined degreesorder of 0.5 kcal mot?, except at the minim®x where the
of freedom are now required here. For best efficiency a balancedifference is 1.6 kcal mof-

must be found between reducipgand increasingN.
Numerical details of the MCTDH calculations are given in
Table 2. Thus the degrees of freeddhrand Q.4 are treated

Qrc is the equilibrium geometry of the neutral butatriene
molecule. It is identical in both the model and quantum
chemistry by construction. The force vector at this polfg

using a set of 2-dimensional single-particle functions, as are in the dynamical coordinates defined in eq 15 is (6:0,039,

the Q12 andQq5s modes. The number of DVR grid points is then
given for each degree of freedom, so for example, th&€)4)
particle had a grid of 4% 15 = 615 points. The number of
single-particle functions for each set required for converged
calculations starting in the upper,, Atate are also given for

+0.046, +0.287, —0.135) in the model and (0.0;-0.032,
—0.017,+0.292,+0.024) from the quantum chemistry. It is
thus dominated by excitation of the, vibration, and electronic
excitation will result in vibrational motion occurring in the
central C-C bond out of phase with vibration of the terminal

the wave packet in each state. The compact nature of theC—C bond.

MCTDH method can be easily seen by the number of complex
numbers required for the representation of the wave function.

Moving to Qcoin, the central €C bond has lengthened by
0.10 A, and the terminaRcc; bond length has shortened by

Using a standard wave packet method, which represents the0.04 A. The energies in Table 3 are taken relative to the vertical

nuclear wave function in the full product primitive basis,
922 500 numbers are required. The MCTDH wave function
needs only 12 388 numbers.

excitation energy from the neutral molecule vibronic ground
state to the upper Atate. Thucon lies 2.5 kcal mot! below
Qrc, and as there is no barrier along the path between these

The process under study is the ejection of an electron by the points, passage to the intersection will be fast.

interaction of the molecule with light. Such a process is modeled

by the transition from the neutral ground state to a diabatic

From eq 25 and the parameters in Table 1, the model
Hamiltonian gradient difference vectd¥gp, in the dynamical

excited state. Only then is the transition dipole moment relatively coordinate system is (0.6;0.006,+0.006,+0.502,—0.049),
constant throughout the relevant space, which is necessary forand effectively lies along th€i4 symmetric stretch normal
the Condon approximation to be valid. The neutral ground-state mode. From eq 26, the derivative coupling vectegc, lies
wave function in the space of the five modes of the model is a parallel to the nonsymmetric normal moQe (the torsion angle),
product of harmonic oscillator (Gaussian) functions for the four with a magnitude of 0.329. The quantum chemistry similarly

symmetric modes, and the lowest eigenfunction from the

calculated¢p = (0.0, +0.034,—0.036,+0.530,+0.017) and
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TABLE 3: Position of Various Critical Points on the Adiabatic Potential Energy Surface from the 5(2829 and A2B,, States of
the Butatriene Radical Cation from CAS(5,6)/3-21G* Calculations and from a Model Hamiltonian Fitted To Reproduce the
CAS Surface$

structure Reci A Reco A Ren A Onee (deg) 6 (deg) Qua energy kcal/mol
FC model 1.329 1.262 1.073 117.61 0.0 0.00 0.076
3-21G* 1.329 1.262 1.073 117.61 0.0 0.00 0.000
Coln model 1.281 1.362 1.091 120.40 0.0 —1.85 —2.287
~ 3-21G* 1.284 1.360 1.079 118.62 0.0 —1.82 —2.467
A model 1.307 1.322 1.089 119.02 0.0 —1.04 —4.289
~ 3-21G* 1.304 1.323 1.077 120.59 0.0 —1.09 —3.756
X model 1.351 1.250 1.085 119.04 31.01 0.42 —26.108
3-21G* 1.346 1.248 1.074 119.12 32.17 0.35 —24.462
TS model 1.307 1.322 1.089 119.02 0.0 0.79 —24.326
3-21G* 1.358 1.237 1.073 119.15 0.0 0.66 —24.077
JT 3-21G* 1.329 1.262 1.073 117.61 90.0 —-0.17 —7.220

3 Qrcis the Franck-Condon pointQcoin is the lowest energy point on th, conical intersection sear@a is the energy minimum on the upper
state,Qx is the energy minima on the lower sta@ys is the transition state dividing the minima on the lower state, @ads the lowest energy
point on theDyy Jahn-Teller intersection seam (not present in model). Geometrical parameters are those in Figur®:4 jsittte (dimensionless
normal mode) central €C symmetric stretch shown in Figure 3. The zero point for the energy is taken at the F2owtton point, 244.896 kcal
mol* (9.449 eV) above the neutral ground-state minimum.

Foc lies alongQs with a value of 0.295. These vectors define In the lower state, an electron has been removed from the out-
the branching space, in which the degeneracy along the conicalof-plane orbitals, whereas in the higher energy state it is removed
intersection seam is lifted. These two nuclear degrees of freedomfrom the in-plane orbitals. In a simple picture, both states have
dominate the dynamics, and in fact a two-mode model is able two double bonds, but the lower state has them across the central
to reproduce the system dynamics well after suitable adjustmentsand one terminal €C bond, whereas the upper state has them
of the parameters to take into account the neglected modes infor the two terminal bonds. As a result, stretching the central
an average mannét. C—C bond will destabilize the Xtate, yet affecting the Atate

The pointQcoin is clearly visible in Figure 4 as the point  very little. Thus stretching this bond will lead from the Franck
where the upper and lower adiabatic surfaces meet. Looking atCondon point to a degeneracy. Compressing the termin& C
the gradients of the two diabatic surfaces at this point, the modelbonds will stabilize both states. It is also clear from this simple

predicts thaF®, = (0.0, —0.009,—0.063,—0.719,+0.070) picture as to whyFrc results in vibration of the central-€C

andF® = (0.0,—0.003,-0.056,—0.217,+0.021), whereas ~ Pond.

the quantum chemistry calculaﬂégg,nz(0.0,—0.044,+0.048, There is one further critical point on the potential energy
—0.707,—0.022) andF?, = (0.0, —0.011,+0.012,—0.176 surfaces. When the GHyroups are rotated so that they are
' con : ' ' : perpendicular to each other, the structure Bassymmetry. In

—0.005). As the gradients on the two surfaces lie in the same P* - - ,
direction, the intersection is classified as slopeith comparison ~ this configuration, the neutral ground-state species has two

to a peaked intersection, a sloped intersection means thatinPaired electrons in degenerate orbitals composed of out-of-
classically the system is expected to recross the intersectionPhase alternate carbon p-orbitals perpendicular to the molecular
before moving away on the lower surfaces. It also means thatPlane: i-e., one uses the p-orbitals fromadd G, and the other
there is in a minimum on the upper adiabatic surfage, This uses those from Cand G, It lies 32.5 keal mot* in energy
point lies betweerc andQcorn, With a depth in the region of ~ above the neutral ground-stdde, structure. The first two states

3.8 kcal mot (quantum chemistry) and 4.3 kcal mé{model) of the radical cation remove these two electrons, and are thus
relative to that aDrc. degenerate. From the symmetry of the molecule here, it 5 an

Moving down onto the lower adiabatic surface, we note that ® £/ Jahn-Teller intersection, and the degeneracy can be
it is periodic around the torsion angle. The minima, which lie rémoved by vibrations with Band B symmetry. The derivative

symmetrically to either side o = 0° lower the symmetry of coupling vector is again providgd by Fhe torsiqn angle, yvhich
the stable geometry frorB, to Dy, which is referred to as ~ NOW has B symmetry. The gradient difference is an antisym-
symmetry breaking due to the conical intersection. The minima Metric vibration along the carbon chain, with the central two
on the lower surface lie a further 23.8 kcal mb{model) or carbon atoms moving together relative to the terminal carbon
22.0 kcal mof?t (quantum chemistry) below the intersection. &toms.
The wave packet will thus appear in the lower state with alarge ~ The geometry of the lowest energy point on the degenerate
excess energy. The-€C bonds of the structures at these points, s€am, labele@,r, is also listed in Table 3. This second seam
Qx, are close to those dDrc, differing by less than 0.03 A. of intersection between the two states is not linked to that at
The terminal CH groups, however, have rotated relative to one the Dzn geometry explored above. The two intersection seams
another so that the dihedral angle~ 32°. Thus after passing ~ are in fact separated on the upper surface by a significant barrier.
through the intersection, torsional motion will begin. The The JahrTeller seam, however, lies 4.8 kcal mbbelow the
minima are separated by a low transition stat®afwith 6 = D2 conical intersection, and is thus energetically accessible after
0.0, and a barrier height of 1.8 kcal maél(model) or 0.4 kcal crossing to the lower surface.
mol~1 (quantum chemistry). The higher barrier in the model is ~ Unfortunately, this JahnTeller seam is not present in the
due to the fact that the minima are deeper than in the quantummodel. This is partly due to the reduced coordinate set used;
chemistry calculations. the antisymmetric stretch that provides the gradient difference
From the quantum chemical calculations it is possible to look is not included. More importantly, in the set of coordinates used,
at the electronic origin of the conical intersection. In Figure 2 the seam should be present as a crossing seam, and due to the
the set of p-functions incorporated in the CAS space is used tomodel adopted this is not the case. The lower surface fits that
characterize the electronic configurations of tharl Astates. of the quantum chemistry, but the upper surface does not meet
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Figure 5. Population of the upperf B,, adiabatic state of the Figure 6. Total number of hops between states in a set of 80 trajectories
butatriene radical cation after the removal of an electron from the neutral over the coupled potential energy surface of t82JA?B,, states of
ground state. Full line: results from 80 direct dynamics trajectories the butatriene radical cation as a function of time. The hops are collected
with surface hopping. The initial population of 0.84 is the magnitude in 1 fs bins. The upper boxes show the hops down from the upper
of the adiabatic component in the initial diabatic wave packet. Dashed state (left-hand axis), and the lower boxes the hops up from the lower
line: results from wave packet dynamics on a five-mode model. state (right-hand axis).

here; the periodicity of the coupling does not allow this. As this only occasional hops occur when a trajectory finds its way
will be seen, however, this region of space is hardly touched back to the intersection.
by the evolving wave packet and this region plays a minor role ~ On examining the trajectories, a number of distinct patterns
in the dynamics, negligible at short times. are seen to occur. Examples are shown in Figure 7. The
3.2. Molecular Dynamics through the Intersection.For the trajectories are plotted here in the space of thand Q4
direct dynamics calculations, 80 trajectories were generated,coordinates as a single line with the starting point at the black
using points sampled on the neutral ground-state for the initial triangle. The plot thus shows the configurations covered in this
conditions and starting the propagation on thestate. Each  space, which is related to the derivative coupling and gradient
trajectory was propagated for 100 fs and took about 10 h on andifference vectors. In addition, information is given on the
IBM SP2 machine. electronic state occupied during the time evolution. When the
Figure 5 shows the rate of population transfer between the system is in the upper electronic adiabatic state, the trajectory
adiabatic states after the excitation. Values were calculated everyis a dashed line, whereas when it has switched to the lower
5 fs. The population at time= 0 is not 1.0 as the excitation  State the trajectory is a full line. As the majority of the time is
(electron removal) was taken as a diabatic process, and so thespent in the lower adiabatic state, the lower potential energy
X adiabatic state is also populated directly to a small extent. surface is shown as a contour plot. Full circi@s show where
The direct dynamics results have been normalized to match thea hop down occurs, and open circles,denote a hop up. For
quantum dynamics adiabaticgopulation at = 0. The transfer example, (a) shows a trajectory that starts close to the Franck
is obviously very fast, which is due to the fact that the conical Condon point at (0, 0). It evolves initially on the upper surface
intersection lies close to the Franekondon point and is  along Q.4 in a negative direction until a hop down onto the
reached almost immediately after excitation. The efficiency of lower surface occurs at the black circle. This point is close to
the transfer is such that after 20 fs the wave packet calculationsthe conical intersection, which lies at the poifif Q14) = (0.0,
(dashed line) indicate that less than 10% is left in the upper —1.9). After this time, the trajectory explores the double minima
state. Recurrences are then seen at 50 and 100 fs, where agf the lower surface.
appreciable recrossing to the upper state takes place. Such All the trajectories approach the crossing region within a few
recurrences are due to the coherent nature of the interstatefemtoseconds. Of the 80 trajectories, 39 cross to the lower state
crossing. As will be seen in more detail later, the quantum wave directly with a single hop and then explore the lower surface,
packet is not immediately dispersed throughout phase space afteas shown in (a). In a different class, 30 trajectories undergo a
going through the intersection, but periodically regroups back double hop while traversing the crossing region, shown in (c).
in the crossing region. Eventually, this coherence will be lost, This is due to the sloped nature of the intersection, so that the
and the recurrences die out. trajectory crosses to the lower surface and then travels up the
The surface hopping of the direct dynamics calculations also repulsive wall. This forces it to return to the crossing region
show that the transfer is extremely fast, and the initial rate of where it crosses back to the upper state. After a short time it
transfer matches the quantum calculations very well. Populationthen returns to the lower state and moves away from the
in this case is simply the percentage of trajectories associatedintersection. Five trajectories undergo multiple crossings while
with a particular state, and so over half the trajectories undergoin this region, and an example of this is shown in Figure 7d.
a hop to the lower state within 10 fs. A small recrossing then Finally, six trajectories do not cross at all, and remain trapped
occurs due to hopping between the states while the trajectorieson the upper surface.
are still in the crossing region, before the population of the upper  After crossing to the lower state, the trajectories explore the
state stabilizes at around 15%. No significant recurrence is seerminima. In eight cases after a number of vibrations on the lower
at 50 or 100 fs. The behavior of the semiclassical trajectories is surface, the trajectory finds its way back to the intersection and
reflected in the number of hops per unit time in both directions, crosses back up, and then down again. This is exemplified in
shown in Figure 6. Hopping down starts after 2 fs, and hopping Figure 7b. Five further trajectories also cross back to the upper
up after 8 fs. After 30 fs the transfer is effectively finished and surface after a long excursion on the lower one, but do this via
the trajectories have moved away from the crossing region. After the D,q Jahr-Teller intersection a® = 90°. An example of
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Q14

Q14

Figure 7. Example trajectories demonstrating the possible evolution of the butatriene radical cation after formationZBotrstate. (a) Direct
interstate crossing followed by exploration of the lower surface. (b) Interstate crossing with a recrossing occurring after exploration af the lowe
surface. (c) Double crossing before exploration of the lower surface. (d) Multiple crossings. The trajectories are plotted in the spaandf the

Qus coordinates, and the lower adiabatic potential energy surface is shown in each case as a contourpleholethe start point. Full circles

® show where a hop down occurs, and open cir€efenote a hop up. A dashed section of trajectory is where it is running on the upper surface.

this can be seen at the end of the trajectory shown in (c). This for this motion of approximately 55 fs. Much larger motion is
is an indication that this second intersection seam may indeedalso seen in this degree of freedom in the trajectory calculations.
be important for the system dynamics at longer times. For a more detailed comparison of the molecular dynamics,
The time evolution of the three significant geometrical we will now look at the snapshots of the evolving wave packet.
parameters of the molecule are plotted in Figure 8. The valuesFigure 9 shows the results from the quantum dynamics
from the direct dynamics calculations are averages over the 80calculations, showing the wave packet as it traverses the conical
trajectories. For the qguantum dynamics, the results are expectaintersection as a series of snapshots. The adiabatic density is
tion values of the density along the appropriate coordinates. For plotted in the space of theé and Q14 modes, integrating over

the torsion angle, the value is calculated over the rangesf) the remaining degrees of freedom:

In general, the semiclassical trajectories show good agreement

with the quantum dynamics results, especially over the first 50 _ [

ned Y pecialy p(0.Qu) = [, dQs Q1 dQ,s W (31)

As expected from the analysis of the potential energy surface
above, initial motion is along the normal mode vector for the The two columns show the density for the two states. The upper
v14 vibration, i.e., extension of the central-C bond and  Panel in each column shows the potential energy surface. At
compression of the terminal-€C bond. This motion occurs = 0, the density is mostly on the upper surface, but as mentioned
with a period of approximately 15 fs, which corresponds to the above, the lower surface is also lightly populated. Note that for
ground-state period of this vibration. The average value of the reasons of scale the top of the packet is cut off. As time
torsion angle starts to change after approximately 5 fs. Excitation Progresses, the wave packet moves across the upper surface,
of this mode is related to passing through the intersection, anddriven by the forces on the nuclei due to the creation of the
thus this delay is due to the time taken for the wave packet to nhonstationary wave packet by the excitation process. Due to
reach the intersection. the conical intersection, transfer of population starts im-

For the model Hamiltonian, a time period for the torsional mMediately, and, as seen in the populations in Figure 5, this is
motion can be estimated from the leading term in the diabatic almost complete after 10 fs.

potential, eq 13. Thus As the population vanishes from the upper state, it appears
in the lower state emerging from the region of the conical
2 intersection. The wave packet has a definite directionality to it

w n '

76 ~ —mz (30) and moves around the intersection into the two minima. The

(roy/ @smy) motion after 10 fs sees the wave packet on the lower surface

split into two parts and spread out. By 40 fs the wave packet is
Using roy/wsm, = 4.35 au, this gives a frequency of ap- moving back together at the intersection. This is the start of
proximately 756 cm?, or a period of 42 fs. This clearly matches the recurrence.
the periodicity seen in the quantum dynamics calculations. The To compare this with the picture from the direct dynamics,
semiclassical calculations appear to have a slightly longer periodthe wave packet dynamics is shown again in Figure 10. This
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Figure 8. Time evolution of the geometrical parameters of the 90 60 353 e
butatriene radical cation after formation in theBa, state. Upper 0
panel: terminal €&C bond. Middle panel: central-©€C bond. Lower 6

panel: dihedral angle. Full lines are the average value from a set of 80 Figure 9. Wave packet dynamics of the butatriene radical cation after
trajectory surface hopping direct dynamics calculations. Dashed lines its production in the Astate, shown as snapshots of the adiabatic density
are expectation values from wave packet dynamics calculations, with (wave packet amplitude squared) at various times in the space of the
the dihedral taken in the range-Q80C°. 0 andQy4 coordinates. The right-hand plots relate to theaAd left-
hand plots the Xadiabatic states. The top panels shows the adiabatic

time, the trajectories of the direct dynamics calculations are Potential energy surfaces. Remaining panels show the density at various

- times. The initial structure represents the neutral ground state vibronic
shown as crosses superimposed on the wave packet contour

. . A Swave function vertically excited onto the diabaficstate.
which correspond to the picture in Figure 9. At the start, a dense

cluster of points indicate that the direct dynamics is sampling a result, it is possible to run a number of trajectories, which is
the space in the region of the initial wave packet. The initial necessary for a comparison with accurate quantum dynamics
motion follows the wave packet and hops to the lower surface calculations.

take place in the region of the intersection, which liesét ( The results presented here show that the direct dynamics
Q14) = (0.0,— 1.9). The direct dynamics thus simulate the wave trajectories using surface hopping are qualitatively in agreement
packet reasonably well in the time scale of the transfer. The with the results of wave packet propagation calculations. The
dynamics after transfer are, however, different. The quantum time scale for population transfer is similar, and the final
wave packet moves diagonally away from the intersection, populations also reasonable. There is a difference, however, in
before dividing into two parts in the two minima. In contrast, the pattern of the recurrences, when population is transferred
after crossing to the lower surface, the trajectories spread out,back to the upper state. In the semiclassical calculations, the
and after 40 fs are seen to cover the whole region and do notsloped nature of the intersection means that trajectories recross

regroup. the intersection region immediately after hopping down. In
contrast, the quantum dynamics calculations show recrossings
4. Conclusions at regular 50 fs intervals.

One of the strengths of the method is that the assumptions
We are presently at the start of investigating the use of direct usually made in the models used for studying the dynamics of
dynamics in the study of nonadiabatic processes, and the aimlarge molecules, such as ignoring certain modes or choosing a
of this study was to see how well simple direct dynamics pre-defined form for the potentials, are not made here. In the
calculations perform for the description of a realistic process. model used here, for example, only five degrees of freedom
The system chosen, the removal of an electron from butatrieneare included. This Hamiltonian is complete to first-order vibronic
is an ideal test case as the topology of the surfaces is such thatoupling and is good for the description of the dynamics during
population transfer after excitation to the upper state starts the initial crossing of the conical intersection. It may, however,
immediately. At the level of theory used, CASSCF/3-21G*, be less accurate for the dynamics at longer times (over 100 fs).
state-of-art direct dynamics as implemented in the GAUSSIAN In particular, dephasing of the wave packet will be suppressed.
program are not prohibitively expensive for this molecule. As In the full system, energy will be transferred slowly to the



Nonadiabatic Dynamics Comparison J. Phys. Chem. A, Vol. 107, No. 5, 200831

X A classical trajectories arrive on the lower surface in a manner
. . uninfluenced by each other. In future work we intend to address
) 148 this problem by the use of more sophisticated direct dynamics,
Qus o PES 1‘2: R probably using a Gaussian wave packet based method to include
) 1‘19 cez some quantum character into the nuclear dynamics.
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